(8.5 mg/kg i.v.), phentolamine metansulphonate (5 mg/kg i.v.), dihydroergotamine tartrate (0.2 mg/kg i.v.), propranolol HCl (3.0 mg/kg i.v.) and BOL (0.25 mg/kg i.v.) never affected the stimulating properties of eledoisin.

(6) Eledoisin did not have a significant effect

on blood pressure at doses tested.

(7) Synthetic substance P (Beckman) proved to be inactive in four out of the five sheep to which it was injected for comparison despite the high doses tested (1-1.5 μ g/kg i.v.).

The results obtained suggest that sheep may be a good experimental model to study the stimulating properties of eledoisin on extravascular smooth musculature without cardiovascular interferences and moreover that this peptide might be a new therapeutic tool for the treatment of forestomach atonia in ruminants.

References

ANASTASI, A. & ERSPAMER, V. (1962). Occurrence and some properties of eledoisin in extracts of posterior salivary glands of Eledone. *Br. J. Pharmac.*, 19, 326-336.

ERSPAMER, V. & FALCONIERI ERSPAMER, G. (1962). Pharmacological actions of eledoisin on extravascular smooth muscle. *Br. J. Pharmac.*, 20, 337-354.

ERSPAMER, V. & GLAESSER, A. (1963). The action of eledoisin on the systemic arterial blood pressure of some experimental animals. Br. J. Pharmac., 20, 516-527.

MIELE, E. & DE NATALE, G. (1967). Modification of pressor effects of some vasoactive polypeptides in the rat by guanethidine, propranolol and related agents. *Br. J. Pharmac.*, 29, 8-15.

ORMAS, P., POMPA, G., BERETTA, C. & FAUSTINI, R. (1974). The effects of some peptides on the systemic blood pressure of sheep. (in press).

Biological characterization of some cyclopentane analogues of muscarone and muscarine

M. CINGOLANI, G. GAMBA, P. PIGINI, L. RE & L. ROSSINI*

Laboratory of Pharmacology, Institute of Experimental and Clinical Medicine, University of Ancona Medical School, 60100, Italy

M. GIANNELLA, F. GUALTIERI, C. MELCHIORRE & M. PIGINI

Institute of Organic and Pharmaceutical Chemistry, University of Camerino, 62032, Italy

We have recently synthetized the following derivatives of muscarone ('A'), and muscarine ('E') (as a mixture of geometric and optical isomers if not otherwise indicated geometric isomerism is indicated with reference to C5 side chain):

A: 1 = 0; $R_2 = H$, CH_3 ; $R_3 = 0$;

B: $R_1 = H$, H; $R_2 = H$, H; $R_3 = 0$;

C: $R_1 = H$, H; $R_2 = H$, CH_3 ; $R_3 = 0$;

D: $R_1 = H$, CH_3 ; $R_2 = H$, CH_3 ; $R_3 = 0$;

E: 1 = 0; $R_2 = H$, CH_3 (cis); $R_3 = H$, OH (trans);

F: $R_1 = H$, H; $R_2 = H$, H; $R_3 = H$, OH (cis)

G: $R_1 = H, H; R_2 = H, H; R_3 = H, OH (trans);$

H: $R_1 = H$, H; $R_2 = H$, CH_3 (cis); $R_3 = H$, OH_3

I: $R_1 = H$, H; $R_2 = H$, CH_3 (trans); $R_3 = H$, OH_3 (cis);

L: 2-3 unsaturated; $R_1 = H$, H; $R_2 = R_3 = H$;

M: $R_1 = H$, H; $R_2 = H$, CH_3 ; $R_3 = 0$; $4 = CH_3$; $5 = CH_2$ (open ring);

N: $R_1 = H, H; R_2 = H, CH_3$ (cis); $R_3 = H, OH$ (trans).

Compound 'C' has already been studied by us (Cingolani, Giannella, Gualtieri, Melchiorre, Pigini & Rossini, 1973a; Gualtieri, Giannella, Melchiorre & Pigini, 1974), and compound 'N' by Sundelin, Wiley, Givens & Rademacher (1973). Both compounds were more active than acetylcholine (Ach) when assayed on guinea-pig ileum, results implying that the electronic contribution of the ether oxygen of the furan ring, and/or the ester oxygen of Ach were not necessary for optimum receptor interaction (cf. Cingolani, Giannella, Gualtieri, Melchiorre, Pigini & Rossini, 1973b; Michelson & Zeimal, 1973). A more complete pharmacological analysis of a series of the isosteres may contribute to the characterization of a new series of Ach receptors, and allow for the revision of current hypotheses of cholinergic activation and control. Receptor purification appears feasible through affinity chromatography of matrix-bound derivatives with adequately long arm-substituents of the new carbocyclic methylene analogue.

Parallel line assays according to Edinburgh procedures (1968, 1970) were performed with Ach bromide and/or chloride as the standard. Potency ratios (relative to Ach) were calculated from the ED₅₀s, obtained through the regression of the log concentrations of the compounds vs the angular transformate of the fractional effects. Statistical significance ($P \le 0.01$) of the values of positions and slopes of the straight lines, and of their parallelism, was checked. The standard errors of mean values of the ED₅₀s were less than 10%.

Preliminary results were obtained on the BP of pithed rats (Wistar, Morini breeding, both sexes, 200-300 g), where the compounds with $R_3 = 0$ showed a characteristic profile of potency, always more than or equipotent to Ach for the hypotensive effect, followed by a hypertensive peak. In the atropinized animal (atropine sulphate, H_2O ; i.v., 800 $\mu g/kg$) hypertension was greater, and disappeared after hexamethonium (chloride; i.v., 4 mg/kg). Nicotinic effects were also assayed on frog rectus abdominis (frog-Ringer, room temperature), and these potency ratios were obtained: 0.35 ('C'); 0.1 ('F', 'I'); 0.03 ('B', 'M'); 0.01 ('D'), and <0.01 ('G', 'H'). Compound 'D' increased the strength of the contractions of the rat-phrenic nerve diaphragm preparation (Krebs solution, 38°C) supramaximally stimulated at 10 and 50 Hz, and was able to counteract the effect of succinylcholine (chloride Midarine Wellcome; 2 μg/ml); all other compounds showed blocking action, greater at the higher frequency of stimulation, 50 to 100 times more powerful for 'C'. Their cholinergic depolarization was increased by succinylcholine, and/or Prostigmine (Roche; 10 μg/ml), and they produced spastic paralysis in the chick.

Muscarinic effects were assayed in vitro on rat jejunum, guinea-pig (Morini, both sexes, 200-300 g) ileum, ductus deferens, seminal vesicle (Tyrode, 38°C), tracheal chain (Krebs, 38°C), and isolated auricle (Ringer-Locke, 31°C), and frog heart (on Straub's cannula; frog Ringer, room temperature). One 'horizontal profile', that is the potency ratios for compound 'C' and for these last seven receptors, was: 2.4; 2.2; 0.65; 0.01; 120; 1.1; and 0.7 respectively, and the effects variously modified by atropine and hexamethonium. The intestinal contractions were slow and prolonged,

an activity which may be related to the inhibition of acetylcholinesterase ($K_i \cong 1 \text{ mM}$; measured according to Ellman, Courtney, Andres & Featherstone, 1961). Compound 'C' showed $\alpha = 0.45$ in seminal vesicle, whereas with all other preparations a unit intrinsic activity had been found. LD₅₀ (i.p.; mice; 24 h observation) was equal to 8.07 mg/kg for the same compound. Examples of 'vertical profiles', that is the pattern of the potency ratios for two other preparations are: g.p. ileum: 2.2 ('C'); 0.02 ('B'); 0.01 ('I', 'L'); <0.01 ('D', 'F', 'G', 'H', 'M'), and tracheal chain: 120 ('C'); 0.5 ('F'); 0.3 ('D'); 0.2 ('B'); 0.1 ('L'); 0.05 ('M'); <0.01 ('H', 'G', 'I').

The singularities of the 'horizontal' vs the 'vertical' profiles prompted us to identify distinctive areas, that is definite patterns of structure-activity relationships, which characterize some new iso-receptors, a conclusion reached both for the nicotinic and the muscarinic effects.

References

CINGOLANI, M., GIANNELLA, M., GUALTIERI, F., MELCHIORRE, C., PIGINI, M. & ROSSINI, L. (1973a). Nuovo analogo carbociclico del muscarone, bioisostero dell'acetilcolina. Abstract, Joint Meeting Italian and French Pharmacological Society, Rome, October 4-6th.

CINGOLANI, M., CIANNELLA, M., GUALTIERI, F., MELCHIORRE, C., PIGINI, M. & ROSSINI, L. (1973b). Configurazione, conformazione e bioisosteria di nuove serie di stimolanti colinergici. Abstract, X Meeting S.I.B.B.M., Padova, September 27-29th.

ELLMAN, G., COURTNEY, K., ANDRES, V. & FEATHERSTONE, R. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. *Biochem. Pharmacol.*, 7, 88-95.

GUALTIERI, F., GIANNELLA, M., MELCHIORRE, C. & PIGINI, M. (1974). A cyclopentane analog of Muscarone. J. Med. Chem., 17, 455-457.

MICHELSON, M. & ZEIMAL, E. (1973). Acetylcholine: An Approach to the Molecular Mechanism of Action, p. 92. London: Pergamon Press.

Pharmacological Experiments on isolated and intact preparations, vol. I (1968), and II (1970), by the Staff of the Department of Pharmacology, University of Edinburgh. E. & S. Livingstone.

SUNDELIN, G., WILEY, R., GIVENS, R. & RADEMACHER, D. (1973). Synthesis and biological activity of some carbocyclic analogs of muscarine. *J. Med. Chem.*, 16, 235-239.